62 research outputs found

    Towards the convergent therapeutic potential of GPCRs in autism spectrum disorders

    Full text link
    Changes in genetic and/or environmental factors to developing neural circuits and subsequent synaptic functions are known to be a causative underlying the varied socio-emotional behavioural patterns associated with autism spectrum disorders (ASD). Seven transmembrane G protein-coupled receptors (GPCRs) comprising the largest family of cell-surface receptors, mediate the transfer of extracellular signals to downstream cellular responses. Disruption of GPCR and their signalling have been implicated as a convergent pathologic mechanism of ASD. Here, we aim to review the literature about the 23 GPCRs that are genetically associated to ASD pathology according to Simons Foundation Autism Research Initiative (SFARI) database such as oxytocin (OXTR) and vasopressin (V1A, V1B) receptors, metabotropic glutamate (mGlu5, mGlu7) and gamma-aminobutyric acid (GABAB) receptors, dopamine (D1, D2), serotoninergic (5-HT1B and additionally included the 5-HT2A, 5-HT7 receptors for their strong relevance to ASD), adrenergic (β\beta2) and cholinergic (M3) receptors, adenosine (A2A, A3) receptors, angiotensin (AT2) receptors, cannabinoid (CB1) receptors, chemokine (CX3CR1) receptors, orphan (GPR37, GPR85) and olfactory (OR1C1, OR2M4, OR2T10, OR52M1) receptors. We discussed the genetic variants, relation to core ASD behavioural deficits and update on pharmacological compounds targeting these 23 GPCRs. Of these OTR, V1A, mGlu5, D2, 5-HT2A, CB1, and GPR37 serve as the best therapeutic targets and have potential towards core domains of ASD pathology. With a functional crosstalk between different GPCRs and converging pharmacological responses, there is an urge to develop novel therapeutic strategies based on multiple GPCRs to reduce the socioeconomic burden associated with ASD and we strongly emphasize the need to prioritize the increased clinical trials targeting the multiple GPCRs

    Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor

    Get PDF
    G protein–coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT4b receptor, a GPCR with high constitutive Gs signaling and strong ligand-induced G-protein activation of the Gs and Gs/q pathways. The first receptor in this series, 5-HT4-D100A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced Gs signaling, but only a few (e.g., zacopride) also induced signaling via the Gq pathway. Zacopride-induced Gq signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT2C receptor. Additional point mutations (D66A and D66N) blocked constitutive Gs signaling and lowered ligand-induced Gq signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT1A conferred ligand-mediated Gi signaling. This Gi-coupled RASSL, Rs1.3, exhibited no measurable signaling to the Gs or Gq pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection

    GFAP-Driven GFP Expression in Activated Mouse Muller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors

    Get PDF
    Background: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.Methodology/Principal Findings: We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Muller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Muller glial cells, several other inner retinal cell types were transduced. To obtain Muller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1(-/-) retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Muller glial cells aligning retinal blood vessels.Conclusions/Significance: Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    Anti-GPCR single-chain antibody fragments to modulate social interactions

    No full text
    International audienc

    Research models and gene augmentation therapy for CRB1 retinal dystrophies

    Get PDF
    International audienceRetinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene

    The CRB1 complex: Following the trail of crumbs to a feasible gene therapy strategy

    Get PDF
    Once considered science fiction, gene therapy is rapidly becoming scientific reality, targeting a growing number of the approximately 250 genes linked to hereditary retinal disorders such as retinitis pigmentosa and Leber's congenital amaurosis. Powerful new technologies have emerged, leading to the development of humanized models for testing and screening these therapies, bringing us closer to the goal of personalized medicine. These tools include the ability to differentiate human induced pluripotent stem cells (iPSCs) to create a “retina-in-a-dish” model and the self-formed ectodermal autonomous multi-zone, which can mimic whole eye development. In addition, highly specific gene-editing tools are now available, including the CRISPR/Cas9 system and the recently developed homology-independent targeted integration approach, which allows gene editing in non-dividing cells. Variants in the CRB1 gene have long been associated with retinopathies, and more recently the CRB2 gene has also been shown to have possible clinical relevance with respect to retinopathies. In this review, we discuss the role of the CRB protein complex in patients with retinopathy. In addition, we discuss new opportunities provided by stem cells and gene-editing tools, and we provide insight into how the retinal therapeutic pipeline can be improved. Finally, we discuss the current state of adeno-associated virus-mediated gene therapy and how it can be applied to treat retinopathies associated with mutations in CRB1

    The CRB1 and adherens junction complex proteins in retinal development and maintenance

    No full text
    International audienceThe early developing retinal neuroepithelium is composed of multipotent retinal progenitor cells that differentiate in a time specific manner, giving rise to six major types of neuronal and one type of glial cells. These cells migrate and organize in three distinct nuclear layers divided by two plexiform layers. Apical and adherens junction complexes have a crucial role in this process by the establishment of polarity and adhesion. Changes in these complexes disturb the spatiotemporal aspects of retinogenesis, leading to retinal degeneration resulting in mild or severe impairment of retinal function and vision. In this review, we summarize the mouse models for the different members of the apical and adherens junction protein complexes and describe the main features of their retinal phenotypes. The knowledge acquired from the different mutant animals for these proteins corroborate their importance in retina development and maintenance of normal retinal structure and function. More recently, several studies have tried to unravel the connection between the apical proteins, important cellular signaling pathways and their relation in retina development. Still, the mechanisms by which these proteins function remain largely unknown. Here, we hypothesize how the mammalian apical CRB1 complex might control retinogenesis and prevents onset of Leber congenital amaurosis or retinitis pigmentosa
    • …
    corecore